Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
J Autoimmun ; 139: 103070, 2023 Jun 12.
Article in English | MEDLINE | ID: covidwho-20242096

ABSTRACT

Infectious diseases are commonly implicated as potential initiators of autoimmune diseases (ADs) and represent the most commonly known factor in the development of autoimmunity in susceptible individuals. Epidemiological data and animal studies on multiple ADs suggest that molecular mimicry is one of the likely mechanisms for the loss of peripheral tolerance and the development of clinical disease. Besides molecular mimicry, other mechanisms such as defects in central tolerance, nonspecific bystander activation, epitope-determinant spreading, and/or constant antigenic stimuli, may also contribute for breach of tolerance and to the development of ADs. Linear peptide homology is not the only mechanism by which molecular mimicry is established. Peptide modeling (i.e., 3D structure), molecular docking analyses, and affinity estimation for HLAs are emerging as critical strategies when studying the links of molecular mimicry in the development of autoimmunity. In the current pandemic, several reports have confirmed an influence of SARS-CoV-2 on subsequent autoimmunity. Bioinformatic and experimental evidence support the potential role of molecular mimicry. Peptide dimensional analysis requires more research and will be increasingly important for designing and distributing vaccines and better understanding the role of environmental factors related to autoimmunity.

2.
J Autoimmun ; 132: 102898, 2022 10.
Article in English | MEDLINE | ID: covidwho-1996311

ABSTRACT

Autoimmunity linked to COVID-19 immunization has been recorded throughout the pandemic. Herein we present six new patients who experienced relapses of previous autoimmune disease (AD) or developed a new autoimmune or autoinflammatory condition following vaccination. In addition, we documented additional cases through a systematic review of the literature up to August 1st, 2022, in which 464 studies (928 cases) were included. The majority of patients (53.6%) were women, with a median age of 48 years (IQR: 34 to 66). The median period between immunization and the start of symptoms was eight days (IQR: 3 to 14). New-onset conditions were observed in 81.5% (n: 756) of the cases. The most common diseases associated with new-onset events following vaccination were immune thrombocytopenia, myocarditis, and Guillain-Barré syndrome. In contrast, immune thrombocytopenia, psoriasis, IgA nephropathy, and systemic lupus erythematosus were the most common illnesses associated with relapsing episodes (18.5%, n: 172). The first dosage was linked with new-onset events (69.8% vs. 59.3%, P = 0.0100), whereas the second dose was related to relapsing disease (29.5% vs. 59.3%, P = 0.0159). New-onset conditions and relapsing diseases were more common in women (51.5% and 62.9%, respectively; P = 0.0081). The groups were evenly balanced in age. No deaths were recorded after the disease relapsed, while 4.7% of patients with new-onset conditions died (P = 0.0013). In conclusion, there may be an association between COVID-19 vaccination and autoimmune and inflammatory diseases. Some ADs seem to be more common than others. Vaccines and SARS-CoV-2 may induce autoimmunity through similar mechanisms. Large, well-controlled studies are warranted to validate this relationship and assess additional variables such as genetic and other environmental factors.


Subject(s)
COVID-19 Vaccines , COVID-19 , Immune System Diseases , Purpura, Thrombocytopenic, Idiopathic , Thrombocytopenia , Adult , Aged , Female , Humans , Male , Middle Aged , COVID-19/epidemiology , COVID-19/prevention & control , COVID-19 Vaccines/adverse effects , Purpura, Thrombocytopenic, Idiopathic/epidemiology , Purpura, Thrombocytopenic, Idiopathic/etiology , SARS-CoV-2 , Vaccination/adverse effects
3.
J Autoimmun ; 117: 102592, 2021 02.
Article in English | MEDLINE | ID: covidwho-974183

ABSTRACT

The diverse clinical manifestations of COVID-19 is emerging as a hallmark of the Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) infection. While the initial target of SARS-CoV-2 is the respiratory tract, it is becoming increasingly clear that there is a complex interaction between the virus and the immune system ranging from mild to controlling responses to exuberant and dysfunctional multi-tissue directed autoimmune responses. The immune system plays a dual role in COVID-19, being implicated in both the anti-viral response and in the acute progression of the disease, with a dysregulated response represented by the marked cytokine release syndrome, macrophage activation, and systemic hyperinflammation. It has been speculated that these immunological changes may induce the loss of tolerance and/or trigger chronic inflammation. In particular, molecular mimicry, bystander activation and epitope spreading are well-established proposed mechanisms to explain this correlation with the likely contribution of HLA alleles. We performed a systematic literature review to evaluate the COVID-19-related autoimmune/rheumatic disorders reported between January and September 2020. In particular, we investigated the cases of incident hematological autoimmune manifestations, connective tissue diseases, antiphospholipid syndrome/antibodies, vasculitis, Kawasaki-like syndromes, acute arthritis, autoimmune-like skin lesions, and neurologic autoimmune conditions such as Guillain-Barré syndrome. We screened 6263 articles and report herein the findings of 382 select reports which allow us to conclude that there are 2 faces of the immune response against SARS-CoV-2, that include a benign virus controlling immune response and a many faceted range of dysregulated multi-tissue and organ directed autoimmune responses that provides a major challenge in the management of this viral disease. The number of cases for each disease varied significantly while there were no reported cases of adult onset Still disease, systemic sclerosis, or inflammatory myositis.


Subject(s)
Autoimmune Diseases/epidemiology , COVID-19/epidemiology , Janus Kinases/metabolism , SARS-CoV-2/physiology , Animals , Chronic Disease , Humans , Immunity , Incidence , Inflammation
4.
J Autoimmun ; 114: 102506, 2020 11.
Article in English | MEDLINE | ID: covidwho-599328

ABSTRACT

Coronavirus disease 2019 (COVID-19) has been categorized as evolving in overlapping phases. First, there is a viral phase that may well be asymptomatic or mild in the majority, perhaps 80% of patients. The pathophysiological mechanisms resulting in minimal disease in this initial phase are not well known. In the remaining 20% of cases, the disease may become severe and/or critical. In most patients of this latter group, there is a phase characterized by the hyperresponsiveness of the immune system. A third phase corresponds to a state of hypercoagulability. Finally, in the fourth stage organ injury and failure occur. Appearance of autoinflammatory/autoimmune phenomena in patients with COVID-19 calls attention for the development of new strategies for the management of life-threatening conditions in critically ill patients. Antiphospholipid syndrome, autoimmune cytopenia, Guillain-Barré syndrome and Kawasaki disease have each been reported in patients with COVID-19. Here we present a scoping review of the relevant immunological findings in COVID-19 as well as the current reports about autoinflammatory/autoimmune conditions associated with the disease. These observations have crucial therapeutic implications since immunomodulatory drugs are at present the most likely best candidates for COVID-19 therapy. Clinicians should be aware of these conditions in patients with COVID-19, and these observations should be considered in the current development of vaccines.


Subject(s)
Autoimmune Diseases/immunology , Betacoronavirus/immunology , Coronavirus Infections/immunology , Cytokine Release Syndrome/immunology , Pneumonia, Viral/immunology , Adaptive Immunity/genetics , Autoimmune Diseases/diagnosis , Autoimmune Diseases/therapy , Autoimmune Diseases/virology , Betacoronavirus/isolation & purification , COVID-19 , COVID-19 Testing , Clinical Laboratory Techniques , Coronavirus Infections/diagnosis , Coronavirus Infections/epidemiology , Coronavirus Infections/therapy , Critical Illness , Cytokine Release Syndrome/diagnosis , Cytokine Release Syndrome/therapy , Cytokine Release Syndrome/virology , Female , Genetic Predisposition to Disease , Humans , Immunity, Innate/genetics , Immunization, Passive/methods , Inflammation Mediators/blood , Inflammation Mediators/immunology , Macrophage Activation/genetics , Macrophage Activation/immunology , Male , Pandemics , Pneumonia, Viral/diagnosis , Pneumonia, Viral/epidemiology , Pneumonia, Viral/therapy , Risk Factors , SARS-CoV-2 , Severity of Illness Index , Sex Factors , COVID-19 Serotherapy
5.
J Autoimmun ; 109: 102442, 2020 05.
Article in English | MEDLINE | ID: covidwho-27261

ABSTRACT

The Coronavirus-associated disease, that was first identified in 2019 in China (CoViD-19), is a pandemic caused by a bat-derived beta-coronavirus, named SARS-CoV2. It shares homology with SARS and MERS-CoV, responsible for past outbreaks in China and in Middle East. SARS-CoV2 spread from China where the first infections were described in December 2019 and is responsible for the respiratory symptoms that can lead to acute respiratory distress syndrome. A cytokine storm has been shown in patients who develop fatal complications, as observed in past coronavirus infections. The management includes ventilatory support and broad-spectrum antiviral drugs, empirically utilized, as a targeted therapy and vaccines have not been developed. Based upon our limited knowledge on the pathogenesis of CoViD-19, a potential role of some anti-rheumatic drugs may be hypothesized, acting as direct antivirals or targeting host immune response. Antimalarial drugs, commonly used in rheumatology, may alter the lysosomal proteases that mediates the viral entry into the cell and have demonstrated efficacy in improving the infection. Anti-IL-1 and anti-IL-6 may interfere with the cytokine storm in severe cases and use of tocilizumab has shown good outcomes in a small cohort. Baricitinib has both antiviral and anti-inflammatory properties. Checkpoints inhibitors such as anti-CD200 and anti-PD1 could have a role in the treatment of CoViD-19. Rheumatic disease patients taking immunosuppressive drugs should be recommended to maintain the chronic therapy, prevent infection by avoiding social contacts and pausing immunosuppressants in case of infection. National and international registries are being created to collect data on rheumatic patients with CoViD-19.


Subject(s)
Biological Therapy , Coronavirus Infections/complications , Coronavirus Infections/drug therapy , Pneumonia, Viral/complications , Pneumonia, Viral/drug therapy , Rheumatic Diseases/complications , Rheumatic Diseases/therapy , Antibodies, Monoclonal, Humanized/therapeutic use , Antimalarials/therapeutic use , Antirheumatic Agents/therapeutic use , Azetidines/therapeutic use , Betacoronavirus/drug effects , COVID-19 , Coronavirus Infections/prevention & control , Cytokines/immunology , Humans , Immunosuppressive Agents/therapeutic use , Interleukin-1/antagonists & inhibitors , Interleukin-6/antagonists & inhibitors , Pandemics/prevention & control , Pneumonia, Viral/prevention & control , Purines , Pyrazoles , SARS-CoV-2 , Sulfonamides/therapeutic use , Virus Internalization/drug effects , COVID-19 Drug Treatment
SELECTION OF CITATIONS
SEARCH DETAIL